UCRL- 92007, REV. 1
PREPRINT

PARALLEL COMPUTATION OF
MULTIPLE-SCALE PROBLEMS

R. C. Y. Chin
G. W. Hedstrom
J. R. McGraw
Lawrence Livermore National Laboratory

F. A. Howes
University of California Davis

This paper was prepared for submittal to:
The Proceedings of the ARO Workshop
on Parallel Computing
Stanford, CA
November 7-9, 1984

March 1, 1985

This is a preprint of a paper intended for publication in a journal or proceedings. Since
changes may be made before publication, this preprint is made available with the
understanding that it will not be cited or reproduced without the permission of the
author.

CIRCULATINNY COPy
SUBJECT 10 i CAL .
W T™WO weekg

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor the University
of California nor any of their employees, makes any warranty, express or implied, or
assumes any fegal liability or responsibility for the accuracy, completeness, or useful-
ness of any information, apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference herein to any specific
commercial products, process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or the University of California. The
views and opinions of authors expressed herein do not necessarily state or reflect
those of the United States Government or the University of California, and shall not
be used for advertising or product endorsement purposes.

Parallel Computation of

Multiple-Scale Problems
by
R. C. Y. Chin,* G. W. Hedstrom,"

F. A Howes,” and J. R. McGraw’

Abstract. The eflicient use of multiprocessor computers requires the intro-
duction of new numerical algorithms, and the identification by asymptotic
analysis of concurrencies inherent in the governing equations of multiple-scale
problems is a good way to develop such algorithms. The language used must be
able to maintain these concurrencies. Finally, depending on the problemn and
the computer, this concurrency may not be sufficient to keep all the processors
busy, so that the language must be able to identify additional concurrencies.
These ideas are illustrated in an example based on a convection-diffusion equa-
tion.

1. Introduction. Most major computer manufacturers now acknowledge
that future generations of supercomputers will need to exploit parallel process-
ing on a very large scale. We know from past experiences that such a drastic
change in computers can produce major changes in the ways we design and
write algorithms. For example, institutions which acquired a CDC Star computer
had to redesign and rewrite essentially all of the programs to achieve promised
performance levels. In the arena of multiprocessing, almost all of our experi-
ence is with vectorization —a very restricted form of parallelism. Here, we have
knowledge about the impact of architectures on the selection of appropriate
algorithms. Some work has been done to execute algorithms on general-
purpose mulliprocessors, but the emphasis there has been on showing how well
Lhe system can do with an existing algorithm. So far, the information we have is
scatlered and skewed.

There exist very many lines of FORTRAN code for scientific computation and
much of this code will be difficult to adapt to multiprocessors. This is because
the efficient use of multiprocessors requires the use of algorithms which minim-
ize communication between processors and which have sufficient concurrency, i.
e., the presence of independent subtasks which may be performed at the same
time. We are faced with the choice of manually identifying concurrency and
relying on extensions of FORTRAN to bandle mulliple tasks or of complelely

‘Lawrence Livermore National Laboratory, P 0. Box 808, Livermore, CA 94550
"Department of Mathematics, University of California Davis, Davis, CA 95616

-2-

rewriting the code in an applicative language. This decision clearly depends on
the code or even on the section of the code. Thus, it is easy for a programmer
or a compiler to find concurrency in a subroutine which does an explicit finite-
difference calculation on a regular grid. For other numerical algorithms, how-
ever, it may be impossible for the compiler and very difficult for the program-
mer to find concurrency without major changes to the algorithms. In addition,
we must point out that our limited experience indicates that it may also be
extremely difficult to verify the reliability of codes using extensions of FORTRAN.

The immediate response to the arrival of multiprocessors is most likely to
be an attempt to get the present FORTRAN codes to run on them with as little
effort as possible. There will be a much bigger payoff, however, if physical
processes which are nearly independent are identified and put on different pro-
cessors with appropriate numerical methods. We should go back to the begin-
ning and ask what is the information we want from the computation and what is
the best way to obtain it.

From the point of view of computer science, the primary goals in the design
and expression of algorithms for parallel processors are (1) minimization of the
execution time, (2) minimization of global memory access, (3) minimization of
communication between processors, and (4) identification of sufficient con-
currency, L. e., identification of enough independent tasks to keep the proces-
sors busy. In short, we want to keep all of the processors working without forc-
ing any to stop and wait for messages to be passed from memory or from other
processors.

We must face the question of who is to partition the program into tasks and
on what basis. It turns out that if we examine the original scientific problem
with multiprocessing in mind, there are inherent partitions we can make, based
on mathematical properties of the governing equations. The term multitasking
is commonly used for breakup at this level. If the number of processors is
sufficiently large, however, the degree of concurrency we get from multitasking
will not be sufficient. Further concurrency will have to be supplied by the com-
piler. It should be kept in mind that in doing this further breakup the original
multitasking identified by the analysis is to be maintained. Thus, we see that
the efficient use of multiprocessors requires the consideration of issues in sci-
ence, applied mathematics, and numerical analysis, as well as in computer sci-
ence.

puting are most suited to multitasking, we are led to examine multiple-scale
problems because of the presence of nearly independent physical processes.
Multiple-scale problems arise when several physical and/or chemical mechan-
1sms are active, each associated with a particular scale. The relative impor-
tance of the various processes is measured by the ratio of the scales. When the
ratio of the scales is a large or a small number, then one of the two competing
mechanisms dominates. The local behavior is given by the dominant
physical /chemical process. The essence of multiple-scale problems lies in the
existence of distinguishable local competing mechanisms, acting on disparate
lemporal and spalial scales. The solutions of multiple-scale problemns display
different kinds of local behavior which may be rapidly varying depending on the
relative magnitudes of the dimensionless numbers measuring the competing
mechanisms. More often than nol, the scales of the various competing
processes and, therefore, the relative magnitudes of the dimensionless numbers
change as the phenomenon evolves.

_3-

Operationally, we choose a set of scales commensurate with the
physical /chemical mechanisms in question, and then cast the governing equa-
tions and the initial and boundary conditions in terms of dimensionless vari-
ables. If the resulting equations contain very large or very small dimensionless
parameters, then the problem is a multiple-scale problern. These dimensionless
parameters are ratios of scales, and they measure the impertance of competing
terms in the equations. Thus, for convection-diffusion equations the Peclet
number or Reynolds number measures the relative importance of convection to
diffusion. If, in addition, a chemical reaction is present, then the Damkohler
number measures the relative importance of convection to reaction.

Current standard practice in solving partial differential equations involves
the use of a single processor to do calculations with algorithms doing the same
thing everywhere on a grid which has regular structure. This approach is quite
adequate when the solution of the problem varies smoothly with respect to the
grid everywhere in the domain, but it gets into difficulty when there are local
regions of rapid spatial or temporal variation. Such local variations are a man-
ifestation of the multiple-scale nature commonly found in the governing partial
differential equations for problems of scientific computing. The computation of
the solution using everywhere a grid and a method appropriate to the local
regions of fastest variation becomes inefficient and at times impossible because
of storage requirements. In fact, we may not even be interested in knowing the
details of the rapid-scale motion, such as the structure of a shock, when only the
speed and direction of the shock are of interest.

The issues involved in computing solutions of multiple-scale problems are
examined in the survey paper by Chin et al. [3], and we give a brief summary
here. It is possible to make a classification of multiple-scale problems from the
point of view of the choices of numerical methods. We may also categorize
multiple-scale problems for their parallel processing potential. This aspect is
not considered in [3]

The most easily tractable multiple-scale problems are those in which there
is only a small number of groups of scales which are widely separated and the
motion on the fastest scales has little influence on the smooth part of the solu-
tion. An identifying feature of this class is the presence of regions in which the
solution undergoes rapid variation. Such regions are called boundary or inter-
nal layers, depending on whether they are located near a boundary or in the
interior of the domain. These are the problems which are most natural for mul-
titasking because it makes sense to break up the domain according to the
regions of different local behavior. An example of this type of problem is the
propagation of a high-frequency wave in a medium with slowly varying wave
speed. Here, the relevant length scale is the wavelength, which is short com-
pared to the length ¢/ Ve |, which characterizes changes in the wave speed.
The formation of caustics is an example of an internal layer in this setting.

A somewhatl more difficult class to handle is that in which there is again a
small number of groups of disparate scales, but the motion on the fast scales
accumulates to induce a slow drift in the smooth part of the solution. Such
problems exhibit rapidly varying solutions with a slowly varying envelope, and we
want to compute only the envelope. In this case the most appropriate numerical
technique involves some sort of averaging or homogenization of the differential
equation. This may require occasional resolution of the rapid-scale behavior of
the solution on Iocal subdomains, as in Petzold [17] or Kirchgraber [12]. It is
nol clear how best to implement the solution of such problems on a

_b-

multiprocessor. An example of this kind of problem is the propagation of a low-
frequency wave in a medium with rapidly varying wave speed. The rapid local
variations have little effect over a short time, but the long-time influence of the
scattering of the wave is substantial. In this case we are not interested in the
details of the local motion, but we want only to compute the general drift of the
solution.

Finally, the most difficult multiple-scale problems are those in which there
is a broad range of scales, rather uniformly distributed. Turbulence, for exam-
ple, falls into this category, as does wave propagation in a varying medium when
the frequency content of the wave extends over a broad range. Little can be
sald in general about methods for solving such problems, but in particular
cases, such as the ray-mode representation of the solution of wave-propagation
problems by Felsen and Kamel [7], it is useful to make projections onto sub-
domains of the solution space.

For special multiple-scale problems there are standard tricks, such as the
use of a grid which resolves the rapid variation. For example, in the computa-
tion of steady flight the boundary layer near an airfoil is commonly handled by
the use of body-fitted coordinates with a fine grid in the direction normal to the
airfoil. This is effective because it is known from asymptotic analysis of the
governing equations that the main flow is not influenced appreciably by the
behavior in the boundary layer, but the effects of viscosity must be represented
accurately if we are interested in separation phenomena. In addition, the
viscous effects act primarily in the direction normal to the airfoil. We need to
extend these ideas to more general situations, and doing so requires asymptotic
analysis of the governing equations to determine how best to break up a prob-
lem into smaller problems on subdomains and to give guidance in the selection
of numerical algorithms on these subdomnains. 1t rmay even turn out to be
appropriate to use an implicit method on one subdornain and explicit methods
on its neighbors. This breaking up of a problem into cornponents is appropriate
even for a serial computer, but it is a natural thing to do on a multiprocessor.

The multiple-scale problems with a number of groups of scales which are
widely separated belong to the class of weakly interacting systems. For prob-
lems in which the motion on the fastest scales has little influence on the smooth
part of the solution, such as internal and boundary layers, the domain is natur-
ally divided into subregions of different behavior which are weakly coupled to
each other. This automatically gives some degree of concurrency, and the more
complicated the behavior of the solution —ihe more concurrency. We can get a
rough idea of the concurrency available here by making work estimates, but we
have to implement the algorithms on a machine in order to find out the precise
dividing line.

For the multiple-scale problems involving slowly modulated rapid variation
it may be feasible to do computations which resolve the rapid motion on
representative subdomains, with different processors working on different sub-
domains. This method would be an extension to partial differential equations of
the ideas of [17] and [12] for ordinary differential equations. This is an area
which is complelely open al Lhis time

In the case of multiple-scale problems with a wide range of scales, rather
uniformly distributed, it may be possible to use a ray-mode type of subspace
projection. This would be an extension of the work of FPelsen and Kamel [7] for
wave-propagation problems. Such an algorithm would be based on a

-5-

decomposition in which some processors do a modal analysis on the slow varia-
tion while others do a ray expansion on the fast variation. Certainly, the ray-
mode [7] expansion for linear wave-propagation problems may be implemented
on multiprocessors. For nonlinear problems of this kind, this algorithm may
again be used but as part of an iterative method.

In any case, the essential mathematical technique for solving multiple-scale
problems is the subspace projection method. Corresponding to a distinguish-
able local mechanism there is an associated subspace in the space of solutions.
The determination of the structure of the subspace is governed by analysis, both
mathematical and numerical. It may be convenient to view the splitting into
subspaces differently in different settings for the purpose of developing an accu-
rate and efficient algorithm. In particular for linear problems, the different sub-
spaces may arise from a decomposition of the domain of definition or from a
spectral decomposition.

In domain decomposition, we solve locally approximate equations whose
solutions generate a subspace which may be identified as an approximation to a
subspace in the spectral decomposition of the original problem. The use of
domain decomposition gives an additional degree of freedom in the numerical
solution, namely, we may solve the local equations using whatever method to
gain accuracy and efficiency. The spectral decomposition method permits a
convenient way to analyze approximation errors and to view concurrency.

In applying subspace projection by spectral methods we are led to the com-
putation of a basis for each subspace, projection operators onto the subspace,
and generalized Fourier coefficients. Of course, the selection of the local basis
and its computation are based on asymptotic analysis. The calculations of the
projections and the generalized Fourier coeflicients involve inner products,
which typically use fan-in algorithms. That is, the concurrency is high to begin
with, but it diminishes as the computation proceeds. This implies that some of
the concurrency must be supplied by the language or by the compiler.

Note that it is not necessary to regard domain decomposition from a spec-
tral poinl of view, and in our example in Section 6 we take a direct approach.

3. Partitioning: Options and Limits. In this section we examine in greater
detail the guestion of identification of concurrency by the programmer and by
the language. Intelligent compiler research efforts all use essentially the same
key principle: only data dependencies need imit the degree to which operations
can proceed simultaneously. If operation B needs the result of operation A, then
B cannot execute simultaneously with A. At the highest level, this principle con-
trols Kuck's efforts [13], just as it does applicative language work (McGraw [14]),
even though both use it in very different ways. Implicit ir: this general approach
to partitioning is one important fact. Intelligent compilers must work with the
specific algorithm described by a program - compilers cannot find concurrency
in an inherently sequential program. Thus, programmers must still write pro-
grams with attention to issues of concurrency. Another point of concern is that
most of this kind of research uses existing algorithms for benchmarking pro-
gress (because they are available). It 1s not at all clear that these task-division
algorithms will work as well on new algorithms designed with parallel computa-
tion in mind.

In contrast, however, programmer-hased partitioning is still in its infancy.
MoslL of the language lools given to programuners rame out of research in

operating systems — a very different problem domain. These tools allow pro-
grammers to describe concurrency and synchronization that make the parti-
tioning obvious. But with the slightest misuse, these tools produce unreproduci-
ble results, deadlocks, and other equally frustrating occurrences. Almost no
language design work has been based on considerations of exactly what types of
concurrency these new applications programs are likely to need.

4. Concurrency and Synchronization: Language Options. Probably the
greatest source of background information relevant to scientific computing with
multiprocessors is in the area of language options for parallel processing. In an
excellent survey paper Andrews and Schneider | 1] discuss and evaluate most of
the significant options. The apportionment of the content of this paper clearly
indicates where the difficult problems lie; only a minor portion of the article
discusses options for creating concurrent tasks, while a major portion discusses
options for synchronization. The latter is a much more difficult task to do
correctly. We can roughly divide the strategies for handling synchronization
into three groups: shared-memory options, message-passing options, and data-
flow options. These options lead to very different types of tradeofIs in the follow-
ing areas: ways of expressing concurrency, mermory requirements, amounts of
concurrency, and the consequences of misuse.

The shared-memory model assumes that all processors access a large
amount of global memory. The synchronization primitives allow programmers
to coordinate accesses to that memory so that some timing errors can be
avoided. FExamples of such primitives include: semaphores, regions, and moni-
tors. These schemes vary in the degree to which they ensure that a program
accesses the shared memory in safe, repeatable patterns. In particular, sema-
phores are often proposed as the simplest scheme to provide to users. Regions
and monitors afford more protection, because they prevent two processors from
getting simultaneous access to shared data. The trouble with the shared-
memory model is that none of these three tools can prevent the user from writ-
ing code for which the final answer depends on the order in which the individual
subtasks happen to be performed. The shared-memory model does have the
advantage that it encourages users to think ir terms of each processor having
access to the entire problemn being solved. During execution each processor can
usually switch its focus to any area of the calculation quite easily. Therefore,
more of the effort of partitioning may b»= done ruring srogram execution.

In contrast, the message-passing mode: generally assumes no global shared
mermory. This view corresponds to the distributed computing world where
several large computers are connected by some form of high-speed channel. In
this model, processors cormmunicate by passing messages to each other, and
the global data for the system must be divided among the various processors.
Programs that use message passing are still susceptible to timing problems that
can lead to unrepeatable behavior, bul und=r ihis strategy the causes are often
easier to identify than with shared memory Partitioning in this system is often
more difficult because the programmer needs to identify divisions that decrease
the amount of message traffic while kreping work {oads relatively even.

The data-flow model approaches synchronizalior in a totally different
manner. Both concurrency and synchronization are implicit in a program,
rather than explicit. The rules governing each are Lhe same. All operations in
the language are treated as functions that map inputs to outputs. Operations
whose inputs do not depend on each cther's outputs (either directly or
indirectly) can execute simultaneous!y If ‘he output for a function is an input

-7-

to another function, then the second function will be synchronized to execute
after the first has finished. This type of concurrency ensures determinate pro-
gram behavior, but unless extended in some fashion, it also precludes indeter-
minate algorithms like chaotic relaxation techniques. To date there has been
insufficient testing to determine how this model influences the programming
style of users.

We need to ask how the forms of synchronization and communication com-
monly available in programming languages alter the mathematical and numeri-
cal formulation of the problems. Synchronization and communication between
parallel processors can be the rate-limiting steps to effective computation. Syn-
chronization is required for coordinating the activities and for timing data
transfer between related processors. A process can't be continued or started if
the required data is delayed. This gives rise to work stoppage and, therefore, a
reduction in available processor utilizatiorn.

For effective decomposition of computational tasks, an asynchronous algo-
rithm with Jocal access of information is preferred. Translating these into
mathematical requirements, we observe that problems governed by hyperbolic
partial differential equations with their local domains of influence are most
likely to achieve full parallel processing capability. Elliptic problems, on the
other hand, with their global structure are the least likely to be suitable for
parallel processing in the sense of asynchronization and local communication.

In numerical analysis, synchronization and communication affect the design
of an algorithm. In the case of matrix multiplication on the multiprocessor Cm*,
Ostlund, Hibbard and Whiteside [16] have found that communication and syn-
chronization are, indeed, the rate-limiting steps in an O{log,N) algorithm. On
the other hand, the analysis of this algorithm by Sameh %18] and Heller [9]
focused only on arithmetic operation counts while neglecting communication
and synchronization costs. Two alternale schemes for taking into account the
communication and synchronization costs are proposed in [16]. One of these
methods is implemented on the Cm* multiprocessor. Both methods partition
the matrices so as to reduce nonlocal memory access.

Another example of an algorithm (orrulation allered by synchronization
and communication among related processors is the solution by finite
differences of Laplace's equation on a plane domain with Dirichlet boundary con-
ditions. Here, an asynchronous iterative scheme is developed by Baudet [2]
Experimental results have shown that this asynchronous iterative scheme per-
forms far betler Lthan synchronous iterations. !nfortunately, proof of conver-
gence for asynchronous iterative schemes is mor» difficult than for synchronous
iterations.

Other avenues of attack are available for solving the elliptic problem. In
particular, because of its nature the subspace projection method may well be
compelitive with the asynchronous methods in terms of accuracy and efficiency.
Here, we can control the accuracy by examining the rate of decay of the gen-
eralized Fourier coeflicients of the boundary data. This determines the number
of terms needed in the spectral representation of the solution to attain the
desired accuracy. Moreover, the differential equations for the coefficients of the
eigenfunction expansion are totally independent of each other, so thal only
access to local memory is needed. This gives an asynchronous algorithm with
local memory access. in aceordance with the requirements for effective mul-
tiprocessing.

5. A Singularly Perturbed Parabolic Equation —Theoretical Background. As
an example to illustrate how asymptotic analysis may be used to identify con-
currency and suggest numerical methods, we =xamine a convection-diffusion
equation. In terms of dimensional variables consider the partial differential

equation
(5.1) g + E(F 1)z = Bilgs
on the domain
D=yzBH |0<s<h 0<t<T
with initial and boundary conditions
O =at), 0<t<T,

(5.2) a1y =8(t), 0<t<T,

W(E0) =HE', 0<i<h
For convenience, the functions @, B’ %, and € arv assumed to be £ functions. It
is also assumed that the boundary data is cornpatible with the initial data in the
sense that

B(0) = 0). B(0) = Ub).
Qur analysis is closely related to the ideas of matched asymptotic expansions
(see Bckhaus [6], Kevorkian and Cole [11]. and Nayfeh [15]), but we do the
matching numerically. We introduce dimensionless variables and identify the
parameters which measure ratios of scales. Thus, % is a positive number which
is small in a sense which will be made srecise later. In this section we discuss
asymptotic analysis of the case whern the onvection dominates the diffusion,
and in the next section we show how tr use this information to design a numeri-
cal method exploiting concurrency.

In preparation for the scaling let us do g qualitative analysis of the problem.
This analysis leads Lo an initial division of 77 into the union of two subdomains.
Since we are primarily interested In the case :n which convection dominates
over diffusion, we begin with an examination »f *he reduced equation

(5.3) Up + C(x)iy =

on). The solutions U of (5.3) are constan! o1. the characteristic curves [5], i.
e., on the lrajectories of the ordinary differentiai equation

dx

e
dt

Thus, the direction of propagation depends sn the sign of €. For convenience we

assume that €>0 on), so that the convection 1+ in the direction of increasing .
Then, for (5.3) we may impose the imit:al anc beundary conditions,

(5.4) L E(E)

~

(5.5) U(E,0) =1y, v <1t <b

2(0t) =alty, < <T,
but the boundary condition al the outflow,

o) =p(1), 0< < T
may not be salisfied. These considcrations suggest a partition of D by the
characteristic Z=["(t) which is the solution to (5.4) with £(0)=0. Note thal the

-Q-

characteristic curve £=1(f) exits D either through the side £=b or through the
top t=T. Let us restrict our attention to the case when the the exit is through
Z=b, which turns out to be the slightly more complicated case of the two. We
therefore define two subdomains, according to whether the solution U of (5.3) is
influenced by @ or by %,

Q,= {2 inD o<t T2
and

Qe = 4EDin D | TYE) <t < Ty
These domains are illustrated in Fig. 1.

In preparation for a theoretical discussion of the difference between the
solution to {5.1-2) and the solution to (5.3-4), we perform an initial scaling in D.
BEg. (5.1) is invariant under the transformation

Q= Wu + a,

and this transformation induces analogous transformations of the initial and
boundary data,

a= Wa + a,
Ez g+ 1,
Y= Wy +a

At this point we have to decide what we wish to emphasize. Thus, assuming that
we are interested in the evolution of the initial data % and that ¥ is not constant,
we may choose W and a so that

O<yZ)<1, 0<Z<b,

where the upper and lower bounds are each attained for_at least one value of
in {0,6]. Assume that with this normalization we have fa(z) |<1 for 0<t<T.

Let us now exarnine the spatial and temporal scales. In (), there are several
length scales, including the length & of the nterval and L,=min 1/ |7'(Z}| asso-
ciated with variations in the initial data . Similarly, in {}, there are obvious
time scales, the timg duration 7 and 7,=mun 1/ |a'(t)| associated with the
boundary data «. In D there are also several, not so obvious, length scales asso-
clated with the variations of the convection velocity ¥ and its derivative 8¢/ 8Z.
We wrile ©=Vc with V chosen so that

V= sup ”
D

The length scale measuring the variation of ¢ is given by

i

L = - —
€ lgf ‘de /0T

We shall see that the length scale
sup |8c¢ /081
D

L =
e Slblp |8Rc / 8%2]

must also be considered. Their roles in the solution will become clear in the
next secticn.

-10-

Corresponding to the relevant time or length scale in , and (2, there are
length or time scales induced by convection and diffusion. In Q.,. there is a con-
vective time scale 7,=1,/ V and a diffusive time scale 7', =1,%/%. Similarly, in
(), there is a convectlve length scale L,=V7, and a d1ﬁuswe length scale
Lye=VET,.

Because we are primarily interested in the evolution of the initial data %, we
change variables in D according to the scales induced by ¥ and €. Thus, we set

Lz and 7= Tht,

z
mapplng Dontoa rectangle
=Hz,t) O0<x <b, 0Dt <T}.

On D {5.1) is transformed into an equation of the form

du o(z. au P

(5.8) e =

) ,
Ax?
with & =%/ VL,. The initial and boundar') conditions for (5.6) in D are
w(z,0) =y(z", 0<z <b,

5.7) u{0,t) = a{t), 0<: <7, and

u(bt)y=Q(t), 0<t<T

The other scales now appear in the form of dimensionless parameters —
ratios with respect to the fundamental scales. Thus, & is the ratio of the length
b of the original interval to the characteristic length [, of the initial data %.
Because we are primarily interested in the evolution of the initial data %, we
assume that b > 1. The other dimensionless parameter in {5.6), £, is the recipro-
cal of the Reynolds number. It is the ratio of the induced diffusion time T, to
the induced convection time 7,, and it measures the importance of diffusion
relative to convection. Note that if 0<e<<1 {or 7, << T,), then (5.6) is a singu-
larly perturbed parabolic equation in /), and ’hf‘ reduced equation for (5.6)
obtained by setting £ = O is

ou ou _ .
(5.8) 3 ¢ (x t)ar = 0.
The initial and boundary conditions for (5.8) are
(5.9) uf{r,0)=yz', 0<x <b,

u(0t)=0a{t; 0t <7

For the sake of simplicity we impose the condition that c¢(z,f)>c,>0 in a
strip

=z, t) |z, <b, 0<t <T}

including the outflow boundary of J. This condition forces the characteristics to
exit D transversally. The transversality of the characteristics and the need to
satisfy the remaining boundary condition (b .t} = 8(¢) give rise to an “‘exponen-
tial” boundary layer for (z.,t) in B. This boundary layer may be seen in terms of
a rescaling of (5.8) intermsof =& - ¢r.

-11-

fu _ Fu
&3¢ c(b —&n, t) = _6772

Therefore, we are led to expect that in F the so]ution to (5.6-7) may be approxi-
maeated for ¢ sufficiently small by the sclution to the reduced equation

du _ %u

{5.10) C(b't)d'r] =
with boundary data

=p{t) atn =0

and u at n=(b —z,)/ ¢ as obtained from the solution to (5.8-9). There will, of
course, be an initial layer near =0 in which (5.10) is not a valid approximation
to (5.6), because we have lost the initial condition. All of this heuristic analysis
is justified by the following theorem of Howes [10].

THEOREM 5.1. Suppose that the problem (5.8-9) has a smooth solution
U(z.t) in D. Then (5.6-7) has a smooth solution %« (z,t,£), and there exists a
positive constant € such that

(5.11) lu(z,t,e) ~ Ulz.t) < Ce
for (z,t)in D\ B, and
(5.12) lu(z,t.e) — Ulz,t)] < K{t)expl—- k(b —z)/e} + Ct

for {(x,t) in B with K(£)=1 U(b.t)—A(t)| and k <:,.

Let us add another complication —an internal *‘corner’ layer generated by
a discontinuity in VU at the origin. Such a discontinuity may easily arise,
because (5.8) prescribes the directional derivative of I/ along the characteristic
curves, while the initial and boundary data (5.9) specify the directional deriva-
tives of U along the coordinate axes. Thus, it is easy to see that VU is continuous
at the origin if and only if a(0)=v(0) and

da _ _ dy

dt dr

at the origin. In the case when the solution U of {(5.8-9) is continuous but VU is
discontinuous along £ =I'(t), in place of {5.11) and {5.12) we have [10]

(5.13) lu(z,t,e) - Ulz,t)y <

Ce + K(t)expl—k(b —z)/ £} + ;68" %expi— Jx_—ﬂﬂ_;

81/2

for (z.t) in D.

6. A Singularly Perturbed Parabolic Equation — Domain Decomposition. In
this section the theoretical tools of the previous section are used to develop a
numerical method for the problem (5.1-2) which contains a high degree of con-
currency. We show that there may be different spatial and temporal scales in
different subdomains and that domain decomposition may be based on this fact.
In addition, we show that in the different subdomains we want to use different
grid sizes in both the spatial and temporal directions, and we may even want to

use different numerical methods.

In applying the domain decomposition method, the domain of definition is
partitioned into subdornains. Along interior subdomain boundaries, the solution
and its derivative 812/ 8Z are continuous. This is the patching of subdomain

-12-

solutions to form a global solution. For singular perturbation problems, it is
often not necessary to ensure that the spatial derivative is, indeed, continuous.
This is because the continuity of 81/ 0Z is asymptotically satisfied. We rely
heavily on a priori estimates to guide us in dealing with the domain partitioning
strategy.

The estimate (5.13) indicates that the domain D should be sybdivided as
shown in Ilig. 2. More specifically, we select numbers %o, £, and tg such that
0<Z,<Z,<b and 0<fy<T. Let .'?::F?(?) be the characteristic curve for (5.3)
through (Z,0), i. e., the solution of (5.4) with initial data Z{0)=0. Similarly, let
Z=[x(t) be the characteristic curve for (5.3) through the point (0,f5). Then we
define the following subdomains,

Dy = (Z.8) | T(E) <2 < £, 0 < t <T,YZ,)),

Da=1(gH) | 0<cz <z, T7UE) <1 < T,

Day = (2.1 | max[0,T4(H)] <& < min [, T (E)]. 0 < < T7ZE)1.

)

<t <L UE,

-~ -~ A ~ o~

Dag = 4Z1) | £, <% <b, 3h) <t < T},

Dgy= {EL) | B, <% <

Dag, = {ED) | £, <2 < b, T, Y2) <t <)

The selection of £y, Z,, and £y is as follgws. Based on (5.13) and a given
error tolerance, we choose the boundaries of D, and D, so that the solution U to
(5.3-p) is a sufficiently accurate approximation to the solution Z to (5.1-2) in the
set Dy /D,. It should be noted, however, that the scalings in Section 5, leading
up to the definition of g, were based on global properties of & %, and €. Thus,
since we are splitting D into subdomains anyway, we ought to use independent
scalings in the different subdomains. Consequently, we gould obtain sharper
versions of (5.13), valid separately in the domains D,, Dgy, Dg Dag. Day. and Dyg,,.
In this way, we might well be able to reduce the thickness of the subdomains
encompassing the boundary and internal layers. Note also that the use of
independent scaling in nearly independent subdomains gives us the freedom to
use grids of different mesh sizes in different subdomains.

Based on Theorem 5.1, we construcl a very simple numerical method which
is valid under the conditions of the theorem when ¢ is sufficiently small. In D,
and D, we solve the reduced equation (5.3) with boundary and initial data {5.5).
The solutions to these two problemsg provide the boundary data needed to solve
(5.1) in the domains Dg,, Dy, and Das. We shall say more about the method to
be usgd in D,, in a moment; for now il suffices to say that the solution in
D,y JD, provides the boundary data for the problem in Dgg, In Dg, we have to
solve the full equation (5.1) in an initial layer near the Z-axis, but outside this
layer we use the solution to (5.10) with the required boundary conditions. In
Dagy we simply solve (5.1), providing Lhe initial conditions for the problem on
Dag. Finally, in D,g we use the same method as was used on Dg,.

Let us consider the problem on Dg, in more detail. In order to avoid need-
less complication of the ngtation, our discussion is based on the scaled equation
(5.8) on the image Dgy, of D4, even though, as stated earlier, we might well want
to use different scalings in different subdomains. let us introduce a coordinate

-13-

system based on the characteristics for (5.6). Thus, we define a mapping from
the (z,t)-domain D,, to a (£,7)-domain A,,. For ¢=0 we use the characteristic
curves which intercept the z-axis, i. e., we take { =7 and

(6.1) = clzemm)

with z{0)=¢£(. We make a similar transformation for £<0, but before we do so, we
must specify the image of the boundary =0, 0<t<T7. One convenient way to do
this is based on the fact that along the line 7=0 for £>0 the differential of the
mapping defined by (8.1) is

dt =dr, dxr =df+c(z,0)dT

In order to ensure that the mapping is smooth in a neighborhood of the origin,
we require that on the line £ =0 the difTferential of the mapping is

di =dr, dr =df+c{0t)dr

That is,the image of the line £ =0 is taken to be the solution curve of the ordi-
nary differential equation

(6.2) %: —c{o,7), £0) =0

Let us denote the solution to (B.2) by £ =yo(7). Because c >0, it follows that yg is
a monotonically decreasing function and that ygo{7)<0 for 7>0. In order to
ensure that the mapping defined by (6.1) will be C! at the origin, as initial data
for (6.1) for £<0 we take z=0 at 7=y "'(£). Let us remark that from standard
theorems on the smooth dependence of solutions of ordinary differential equa-
tions on initial data [4], it follows that the mapping we have constructed is C! in
Dy

The Jacobian of our transformation is J =9z / 8¢, and our construction of ini-
tial conditions for (6.1) implies that J=1 on the lines t=0 and z=0. With this
transformation Eq. {5.6) becomes

du _

£
(6.3) ar J Bt

or equivalently,

(6.4) du _ & [azu 1 8J Bu]

ar J% |ae8 7 BE of

1t should be noted that this transformation to characteristic coordinates may be
done on any of our six subdomains and that the form of (6.3) remains the same.
(There is, however, no advantage in making this transformation in £.) Only &
changes as we use different scalings on different subdomains. In fact, on D,\ D,

we propose solving only the reduced form of {6.3),
du _
(8.5) 3 0.

In this form of the equation we see a very high degree of concurrency.

The image of D, in the characteristic coordinate system is a domain

Bay = 1(£.7) | yolto) <€ <xo. max[0. yo'(¢)] <7<y (¢)),
where £¢=y,(7) is the image of the boundary z=z,. For £20 the initial data for
(6.3) is u?g,o):y(é), and for £€<0 it is u(yo(‘rg,'r):g(‘r). The boundary data is pro-
vided by the solutions to (8.5) in the images of D4 and D,. Regarding practical

-14-

numerical algorithms for (8.3) in Ay, let us remark that we expect du/ 07 to be
small except in a region of layer development near the origin. Consequently, we
would use a small time step only in this neighborhood, and we would use the
hopscotch method of Gourlay [8] outside this neighborhood. This is because the
hopscotch method is an explicit method which is stable for arbitrary time steps,
but it is only first-order accurate with respect to the timestep.

Note that our analysis also forms the basis of a more robust method, which
may be used when the condition of Theorem 5.1 (smoothness of the solution U of
(5.8-9)) is not fulfilled. While we are solving {6.1) im aD, we may concurrently

monitor the coeflicients of (6.4). Thus, v and 79 satisfy the ordinary
differential equations,
8 _ ;08¢

(6.6) 3" Ja.’r
and

da 11 aJ 9%c
8.7 — = =J :
(6.7) ar [J a¢ Ar?

It follows from the construction of the characteristic coordinate system that the
initial data for (6.6) is /=1 at 7=0 for ¢=0 and J =1 at T=y§!(£) for £<0. For £=0
the initial data for (6.7) is clearly

1 8J _ L
7 af—[) at 7 =0.

The initial data for {6.7) for £<0 is a littie more complicated, however. From the
initial data for {6.6) it follows that the directional derivative of J is zero in the
direction tangent to the curve 7=yg{f). Also, it follows from {6.6) that along the
curve ¢ =yq(7) the directional derivative of J in the direction parallel to the 7-
axis is equal to 8¢/ 8x. Thus, for £<0 the initial data for (6.7) is

1o/ 1 8 .. _ .
J 3¢ c(07) Bz b= yet (6)
There are, of course, many other ways to introduce a characteristic coordinate
system, thus specifying initial data for (6.6) and {6.7). We have simply chosen
one way which guarantees that the transformation to characteristic coordinates
is C! in a neighborhood of the T-axis. Let us also point out that (6.7) may be
written in a form which clarifies the roles of the length scales I; and L4,

an
of

We remark that when g——>0 then /=1 and that when 6__<0 then J can
become arbitrarily small Once J becomes as small as O?\/_ the diffusive

effects are no longer negligible. This happens only for ST<O’ which describes a

solution undergoing compression to form a steep gradient, indicating that the
length scale for u is no longer equal to the length scale for 7. In the neighbor-
hood of the steepening diffusion plays a dominant role. Thus by using J as a
monitor, we determine dynamically where i' is valid Lo neglect diffusion.

In conclusion, we have shown that asymptotic analysis of the convection-
diffusion equation (5.1) leads to a decomposition of the domain into regions on

-15-

which we should use different approximating equations and different numerical
methods. The result is a numerical method which exploits concurrency inherent
in the mathematics and identifies the synchronization required. The number of
processors may be so large, though, that even more concurrency will have to be
provided by the language.

Finally, let us remark that the method outlined above also applies to the
nonlinear conveclion-diffusion equation obtained by allowing ¢ to depend on Z as
well as on Z and £ in (5.2). In this case shock layers may develop in the interior
of D {or, equivalently, in the interior of A, the image of D in the characteristic
coordinate system). This phenomenon is quite analogous to the steepening of
the gradient found in the linear problem when dc / 3x <0. The presence of shock
layers requires the introduction of more subdomains. Note that as the solution
progresses, we may monitor the need to introduce shock layers by concurrently
computing the values of J and 8J/ 8¢ by solving the ordinary differential equa-
tion (6.8) and integrating (6.7).

Acknowledgments. The work of the first, second, and fourth authors was
supported by the Applied Mathematical Sciences Research Program of the Office
of Scientific Computing, Office of Energy Research, U. S. Department of Energy,
by Lawrence Livermore National Laboratory under contract number W-7405-
Eng-48. The work of the third author was supported in part by the National Sci-
ence Foundation under grant number DMS 8319783

REFERENCES

[1] G. R. ANDREWS and F. B. SCHNEIDER, Concepts and Notations in Concurrent

Programming, ACM Computing Surveys, 15, (1983}, pp. 3-43.

[2] G. M. BAUDET, The Design and Analysis of Algorithms for Asynchronous Mul-
tiprocessors, Ph. D. Dissertation, Carnegie-Mellon University, Pittsburgh,
1978.

[3] R.C.Y.CHIN, G. W. HEDSTROM, and }. A. HOWES, A Survey of Analytical and
Numerical Methods for Multiple-Scale Problems, UCRL-20971, Lawrence

Livermore National Laboratory, Livermore, California, 1984.

[4] E. A. CODDINGTON and N. LEVINSON, Theory of Ordinary Differential Equa-
tions, McGraw Hill, New York, 1955.

[5] R. COURANT and D. HILBERT, Methods of Mathematical Physics, vol. 11, Inter-
science, New York, 1962.

[8] W. ECKHAUS, Asymptotic Analysis of Singular Perturbations, North-Holland,
Amsterdam, 1979,

[7] L. B.FELSEN and A. KAMEL, Hybrid Ray-Mode Formulation of SH Motion in a

Two-Layer Half Space, Bull. Seismol. Soc. Amer., 71, {1981), pp. 1763-1781.
[8] A. R. GOURLAY. Hopscotch: A Fast Second-Order Partial Differential Equa-

tion Solver, J. Inst. Math. Appl., 6, {1970), pp. 375-390.

[9] D. HELLER, A Survey of Parallel Algorithm= in Numerical Linear Algebra,
SIAM Review, 20, (1978), pp. 740-777

[10] F. A. HOWES, Multi-Dimensional Reaction-Convection-Diffusion Fguations,

Proc. Conf. on Diff. Fqns. Dundee, Springer-Verlag, New York, 1984. (In
press.)

-16-

[11]J. KEVORKIAN and J. D. COLE, Perturbation Methods 1n Applied Mathematics,
Springer-Verlag, New York, 1981.

[12] U. KIRCHGRABER, Dynamical System Methods in Numerical Analysis. Part I:
An ODE Solver Based on the Method of Averaging, Research Rept. 83-02,
Seminar flir Angewandte Mathematik, Eidgentssische Technische

Hochschule, CH-8092 Ziirich, 1983.

[13] D. J. KUCK, R. H. KUHN, D. A. PADUA, B. LEASURE, and M. WOLFE, Depen-
dence Graphs and Compiler Optimization, Proc. 8th ACM Symposium on
Principle of Programming Languages, (1981), pp. 207-218.

[14]J. R. MCGRAVW, The VAL Language: Description and Analysis, ACM Transac-
tions on Programming Languages and Systems, 4, (1982), pp. 44-82.

[15] A. H. NAYFEH, Perturbation Methods, Wiley-Interscience, New York, 1973.

[18] N. S. OSTLUND, P. G. HIBBARD, and R. A. WHITESIDE, A Case Study in the
Application of a Tightly Coupled Multiprocessor to Scientific Computations,

pp. 315-384 in Parallel Computations, ed. G. Rodrigue, Academic Press, New
York, 1982.

[17] L. R. PETZOLD, An Efficient Numerical Method for Highly Oscillatory Ordi-
nary Differential Equations, SIAM J. Numer. Anal., 18, (1981), pp. 455-479.
[18] A. H. SAMEH, Numerical Parallel Algorithms - A Survey, pp. 207-228 in High
Speed Computer and Algorithm Organization, ed. D. J. Kuck, D. H. Lawrie,

and A. H. Sameh, Academic Press, New York. 1977.

